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NON-LINEAR DYNAMICS OF A CONSERVATIVE SYSTEM DEGENERATING 
INTO A SYSTEM WITH A SINGULAR SET* 

R.F.NAGAYEV and V.N. PILIPCHUK 

A non-linear dynamical system with an arbitrary (but finite) 
number of degrees of freedom, which has a singular set in the 
degenerate case - a manifold of codimension one, is investigated. The 
characteristic feature of such systems, which describe the dynamics of 
various elastic flexible constructions, is that the degenerate system 
remains essentially non-linear of the same dimensions as the original 
system. This impedes direct construction of an asymptotic solution 
with respect to a suitable small parameter. As will be shown, the 
construction can be accomplished after some preliminary 
transformations, based on the idea of presenting the motion of the 
system as a drift of a localized region of high-frequency oscillations 
over the singular set, deviating from that set in the normal direction 
only. 

The theory is illustrated by treating the problems involved in the 
oscillations of a thin-walled shallow arch and an elastic circular 
ring. 

We consider mechanical systems described by a Lagrangian of the following 
form: 

L=T--_IT (0 
T = l/$X’“, II = l/zfZ (I) Jr &QD (2) 

5 = (Xl, . . .( a) (21 

where es<1 is a parameter and f(x) and CD(z) are holomorphic functions, the first of which 
has the property that the set 

i&f! = {s: f (5) = 0) (3) 

is an(n - i)-dimensional manifold in R", 
Such situations arise, for example, when one is investigating the dynamics of certain 

flexible elastic structures that may undergo large displacements in reaction to small 
relative deformations. In such cases the manifold &if corresponds to the continuous set of 
equilibrium modes of the degenerate (absolutely flexible) structure /l, 2/. 

Direct construction of solutions of the equations of motion corresponding to (1) and (2) 
is difficult, and in fact the smallness of the parameter F is at first sight useless, since 
the degenerate system (a = 0) remains essentially non-linear and of the same dimensions as the 
non-degenerate system. Moreover, analysis of the expression n in (21 shows that, if the 
energy is given, the effect of the non-linearity increases as e decreases. This is in 
agreement with common conceptions of the dynamics of flexible structures: if the energy of 
the oscillations is fixed, their amplitudes are higher the more flexible the structure. 

We will reduce the system to a form that is easier to handle by standard methods; this 
will be done via a certain coordinate transformation. 

Lety = (yr, . . ., y,)be an arbitrary point of M*: f(y)= 0. We shall assume that at least a 
sufficiently large part of the manifold admits of a parametrization in terms of a curvilinear 
orthogonal coordinate system s =(ss,, s -): "',7X1 

y = Y(S), ““, ;: aYi hi 
6 as--“as,asp= afit a,f$=f,...,n-1 

B 

where aaR is the Kronecker delta and repeated indices indicate summation. 
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Let n (s) = (n,, . ., n,,) denote the unit vector normal to ,%ff at the point i/(s): 

Let us assume that the coordinate s normal to -"r, is such 
that the relationship of the coordinates 4s. 5) to the original 
coordinates (Cartesian in R") is as follows (Fig.1): 

1 at 
n,=----7--, 

Jf Jf 1 
w dYi OP= dyi-q-7 

i= l,...,n 

Fig.1 
z = y t nE, y = Y (sh n = n (4 

Then the expression for the kinetic energy (2) in the new coordinates is 

T = I/* (&s -t- 2mcc& -I- ~$3 s,“% f %!? 

1 
*a@= T & 

i 
~~+~~), nGS=G-$ 

For velocities sa' we have generalized momenta 

par = 8T/&-,’ = s,’ + (Zm.,& f- na@2) sp’ 

(4) 

Conversely, s,’ can be expressed in terms of the momenta by expanding in powers of g 
(throughout, E is assumed to be sufficiently small) 

s,' = pa - 2Em,ypp - &&pp -t_ . . . 

w = nag3 -4fiymyp, y=I,...,n--1 

To transform to a standard system with one rapidly rotating phase, we use the Routh 
function R = pas,’ - T + II. 

Suppose the energy of the system is of the order of s2. Then it follows from (2) that 
the trajectories of the motion will lie in a certain neighbourhood of 194, with normal 
deviations E of order e. 

Expanding II (see (2)) in powers of 5 and applying the following scale transformation of 
variables 

E = EC, pa = &T=(R = eR) 

we obtain 

(5) 

System (5) is Lagrangian with respect to the normal coordinate 5 and Hamiltonian with 
respect to the variable sa, r,. The corresponding equations of motion are 

5" -t 025 + s$+s2q+...=O 

s,'=t: r, fe 
( 

acr(O 
7 + s2 

au@' 

a 
7-!-*** 

a J 

(6) 

At the initial time the new variables stand in the following relation to the old ones: 
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where, in view of the assumed order of magnitude of the energy, the right-hand sides of the 
equations for <,c',ra are of the order of unity, and the last equation yields a system of 
equations for the initial values of the coordinates s,, a = 1, . . ., n - 1. 

We now introduce action-angle variables (I - cp): 

c= (/21/ocoscp, c=-1/210sincp (7) 

In view of the relation 

ao aa w’ = 7 sa’ - e - r, f e 
a %z ( qp+...) 

we finally obtain a system with one fast phase: 

U(l) = A, (I; s, r) cos cp + B, (I; s) cos 39 

U@) = Az(I;s, r) + B,(l;s, r)cos 29 $ C,(l;s)cos4rp 

-4, = ~/?(U,+%V,- magr,rg), B, =J,/gVx 

A, = &(Ua $ %I’,--_rz&r,ra) 

B”=&(U, +~V,-_&r,rn), Ca=e 

(evaluation of the derivatives a'/& does not require differentiation of the variable 5). 
After applying Bogolyubov's averaging procedure /3, 4/ to Eqs.(8), we obtain a system 

in which the fast phase does not occur on the right (two approximations): 

i$ = 0 + e2 I 2$ -&&A1Z+W)- 
~[(,:~~)‘-I-(~)‘])+O(e3) 

f’ = 0 (e”), S,’ = eI:, + 0 (es), i,’ = - &a (lo + U,)/a.% + 0 (e”) 

(9 

The new variables (@,I;S,,F,)are related to the old ones by the formulae 

rp=F+$ -!$sinQf5Tsin3?j+ 
( 

1 aB, 
-&-$eos2q +O(ez) 

V. > 

I=f_L o A,coscp+B,cos3?j- &sF,sin2T 
( 

+O(e') 
CI > 

s, = S, f O(G), r, = 7, - e&-$ sin 2+ + O(G) 
a 

Thus, the original conservative system, perturbed by a quantity of the order of c2,can 
be reduced to a "quasilinear" system and studied by asymptotic expansion in powers of e. 

It should be noted that since ao/&,# 0, the transformation (7) is not canonical. The 
structure of Eqs.(8) is therefore faulty. The essential point is that in the type of 
problem under consideration it seems impossible to derive exact Hamiltonian equations with 
one fast phase and the other variables slowly varying. It is all the more significant that 
up to quantities of the order of $ the new action variable I in the averaged system (9) is 
an adiabatic invariant, while the equations for Fa and ?, have a canonical structure and 
therefore have a first integral 

'IF = z a + 1w + U, = h (11 = const) (10) 

If the system has two degrees of freedom, the manifold Mf of (3) is a curve in the 
coordinate plane z,.z2, so that there remains only one coordinate s,=s; using (10) one can 



express the latter by quadrature as a function of time: 

Thus, in the case of two degrees of freedom the problem of integrating the equations of 
motion reduces to evaluation of an integral. 

Example 1. The equation of the free non-linear oscillations of a thin-walled shallow 
arch when ends clamped /5/ may be written, after an appropriate scale transformation of the 
variables, as 

where e is a parameter representing the liftinq power of the arch, P is the thrust, Will? x) 
is the coordinate of the elastic curve, measured in fractions of e,t is a time parameter. 

For a two-hinged sinusoidal arch, putting 

We = -sin q, W = X, (7) sin r) I_ z2 (f) sin 29 

we obtain a coupled system of two non-linear equations in the coefficients of the first two 
arch modes: 

where the coefficient of the linear terms is a small parameter, so that direct construction 
of an asymptatic solution is a difficult task. 

In the plane of the frist two modes, expressions for the kinetic and potential energy 
of the elastic deformations are easily determined from the form of the equations of motion: 

The manifold f(+z&= 0 is in this case an ellipse in the Z,Z, coordinate plane - the 
locus of configurations of the arch with no extension-compression deformations of the 
central curve. Displacement along this ellipse corresponds to pure deflections of the arch. 

Expressing the equation of the ellipse as 

5% i yl - --co9 6, 9 = gz = r/&n 6 

we obtain o= [I,', (1 f 3sin* f&j y*,ds"= ~J&B~~. Eq. (11) becomes 

The quantities necessary for the computation may be written as 

Fig.2 shows curves of ~@)~~,,(curve 3),o(6) (curve Z),COS~* = --I/~. For I&O onekias ~(6) =F(8)JF_o+ 

.rw W, and hence it follows that the high-frequency oscillations associated with 
extension-compression deformations (the term 10 in the expression for F (6)) increase the 
potential barrier between the initial (f3= 0) and "reversed" (0=x) equilibrium positions of 
the arch and therefore make the arch more stable to buckling. We emphasize that we are 
concerned here with thin-walled arches (ee+$l), in which buckling is accompanied by bulging 
of skew-symmetric form. 
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Exampie 2. Consider a thin-walled circular ring. Within 
the limits of flat-shell theory, the equation of the free 
oscillations of the ring may be written as 

Fig.2 

where the parameter e 
along the outer normal 

Setting 

is proportional to the relative thickness of the ring; W is measured 
from the non-deformed position of the central curve. 

and proceeding as in the previous example, we obtain (12) with 

j = zl+ 222, CD = 82*2 

Thus, the manifold Mjin this problem is a parabola in the +Q plane. The position of 
a point on the parabola is uniquely defined by the coordinate yl, in terms of which we 
express the quantities needed for the computation: 

We remark that a ring, unlike an arch, cannot buckle, and the effect of high-frequency 
oscillations with extension and compression of the central curve is merely to increase the 
effective flexural stiffness of the ring. 

1. 

2. 

3. 

4. 
5. 

REFERENCES 

MANEVICH L.I. and PILIPCHUK V.N., Non-linear oscillations of a three-link mechanical 
structure with several equilibrium positions. Prikl. Mekh., 17, 2, 1981. 

PILIPCHUK V.N., On a method of investigating non-linear problems in the dynamics of 
rectangular plates with initial irregularities. Prikl. Mekh., 22, 2, 78-85, 1986. 

BOGOLYUBOV N.N. and MITROPOL'SKII YU.A., Asymptotic Methods in Non-linear Oscillation 
Theory, Fizmatgiz, Moscow, 1963. 

MOISEYEV N.N., Asymptotic Methods of Non-linear Mechanics, Nauka, Moscow, 1981. 
VOL'M IR AS., Non- linear Dynamics of Plates and Shells, Nauka, Moscow, 1972. 

Translated by D.L. 


